
Document release 06/03/22

The ELLO Computer Project

1 Introduction

What is ELLO about?

In one sentence – to have fun building and learn in the process.

The focus is away from competing with the big guns, such as Raspberry and the

likes, but rather an alternative option to enjoy building and programming a small

and very unpretentious computing system, entirely from scratch.

So, what are the goals?

When started with the project, I set several important goals ahead:

1. To let the user be able to build the entire computer themselves.

This means to be as simple as possible hardware, built only with atomic

components (no pre-assembled modules), and without significant

compromises on its basic functionality.

As “basic functionality” I defined the following set of parameters:

a) To be able to use standard input and output devices – keyboard and

monitor.

b) To have some available non-volatile storage.

c) To have some reasonable minimum amount of RAM.

d) To have some means to produce sound.

e) To have some expansion capabilities.

f) To be built only with parts which are large enough for handling even by

the most inexperienced user. This significantly complicates the choice

of components as it excludes almost every available modern

microprocessor or microcontroller as they are all manufactured only as

small surface-mount packages.

2. Not to use a heavy and resource consuming operating system.

Trumpeting about great hardware and then leave the user banging his or her

head in the wall, and having to search the Internet every time they need to

write something, gives no pleasure to the user nor teaches them anything other

than developing proficiency in using search engines. Hence, anything

including the word “Linux” falls automatically into the “no-no” category of

choices.

I decided to make the ELLO in the same proven way as the early personal

computers – a built-in interpreter to allow immediate integration with the

system.

3. To offer a “meaningful” programming language.

The opinions what programming language should such small computer

include, vary a lot indeed. About 99% of all similar systems today run some

dialect of BASIC, which by itself is an excellent and powerful programming

language.

In contrast to all, ELLO includes a tiny C interpreter!

In my view and with the full respect to BASIC, which was my first, just like

to many others, C is the one truly “universal” programming language, and

worthy to be learnt by anyone who wants to have a closer contact with

programming. It is the de-facto “The Language” in the modern computing

world, especially in the modern embedded computing world. C is also much

more “unsafe” language with significantly lower tolerance for errors than

BASIC or other alternatives, especially when working with direct access to

the memory and the other hardware resources. While that might sound scary,

it is also beneficial for the user to learn and work without having an error net

which saves them from mistakes otherwise. Teaching careful programming

and awareness of the system resources can do only good to any programmer.

Due to its powerful features and loose syntax, C is extremely difficult for

implementation as a runtime interpreter – only a handful ever written, none of

which able to work well in a small bare-metal OS-less system like the ELLO.

I jumped on this additional challenge with great enthusiasm, but it still took

many months of hard work and debugging to get it to the current level.

Of course, the C dialect running on the ELLO is much simpler than its typical

desktop equivalents, but still includes all the original language elements and

even adding some limited compliance with the C99 standard. Its execution

speed is of course far from what a compiled program would be like, but it still

serves quite well its purpose in this case.

Finally, I owe big thanks to Geoff Graham for the source of his “ASCII Video

Terminal” which was a valuable reference for me for the video generation and

support of a PS/2 keyboard, and saved me many hours of development.

https://geoffg.net/terminal.html
https://geoffg.net/terminal.html

Also, extending the thanks to Alan Ott for his excellent and simple to use

open-source “M-Stack” which ELLO uses for the handling of USB console.

https://github.com/signal11/m-stack

2 Hardware

2.1 Specifications

Model: ELLO 1A

PCB revision L2

Chip:

Frequency:

PIC32MX170 or PIC32MX270

50 MHz

Total RAM: 64 Kbytes

12 Kbytes reserved for system needs and stack

15 Kbytes reserved for video page

37 Kbytes memory available for user’s programs

Total ROM: 256 Kbytes

194 Kbytes system software

62 Kbytes available as non-volatile storage drive

Video: VGA, 7 selectable main colours
480 x 250 graphic pixels (480x320 in earlier versions)

80 x 25 text characters (80x29 in earlier versions)

NOTE: 480x250 is not a standard resolution, so you may need to play a bit with the controls of

your monitor

Sound: On-board speaker

Input: PS/2 keyboard connector

Storage: Small internal flash storage space - drive IFS:

Full size SD card holder - drive SD1:

Expansion: Mini-DIN connector with A/I/O, UART and I2C interfaces

Standard 0.1” header with A/I/O ports, SPI and I2C

Optional USB interface (with PIC32MX270 only)

Power: 5V DC through standard mini-USB connector
Average current consumption 44 mA

2.2 Schematic

ELLO 1A is among the simplest computing systems, built from only 25

components, some of which optional. It is in fact so simple that a prototype can

be easily built on a breadboard. The PIC32 microcontroller is a single chip in the

heart of the computer. It handles everything in software – the video, the interfaces,

sound, and executing the C interpreter. The reason I chose this particular model

is, because at the time of the design it was the most powerful microcontroller on

the market, coming in a through-hole package. It is still quite limited in

comparison with other modern chips, but at the same time is a completely

reasonable option for the main goals of the project.

I have intentionally designed the schematic in such absolutely minimalistic way

so it can be easily understood by anyone.

As an additional note, the diode D1 is to provide voltage level protection on the

monitor’s input. All monitors though, include their own protection on the input,

so installing D1 on the board is optional.

Pursuing maximum simplicity and the limited number of input/output pins on the

microcontroller come at the expense of solutions which are not exactly “by the

book”, and may make some hardcore engineers feel uneasy. One of the great

advantages of the PIC32 is its sturdiness and tolerance toward imperfect

environments, which works great for the purpose of this project.

2.3 PCB

ELLO 1A is built on a small 2-layer PCB with size 70 x 60mm (2.76” x 2.36”).

I order the prototype boards from JLC: https://jlcpcb.com

Their quality has been great in all boards I have ordered so far, and the prices are

unbeatable. When ordering, the default parameters suit just fine for this board.

The PCB is designed in such way, so the component footprints take either the

through-hole or the surface-mount (or a mixture of the two) BOMs, according to

what parts are available or preferred by the user. There are a few exceptions,

though, such as the VGA/PS2 combo.

https://jlcpcb.com/

For the assembly, I only used my small soldering iron. It takes about an hour to

solder all the components without rush.

My recommendation is always to start with the SD card holder in a through-hole

assembly, and with the PIC32, followed by the power supply IC and the SD card

holder, in a surface-mount assembly.

Surface-mount components are best soldered when the board is perfectly flat, so

ideally they should be preceding any through-hole components.

Whenever possible, I recommend installing a socket for the PIC32 chip in the

through-hole variant. This recommendation has been reflected in the TH BOM as

well. The large VGA/PS2 combo connector should be installed last, and the

PIC32 chip plugged into the socket only after the entire board has been

assembled.

3 Software

The built-in software in ELLO 1A can be roughly divided into three main parts:

system functions, RIDE shell, and C.impl interpreter.

The system functions are a set of various hardware-dependent functions,

completely transparent to the user, and dealing with the overall operation of the

hardware, such as producing the video signal, various timing routines, handling

the file allocation system on the storage drives, etc. These are the only parts in

the entire firmware, which are hardware-dependent.

3.1 The “RIDE” Operating Environment

RIDE (“Rationally Integrated Development Editor”) is where the user interacts

with the system. In essence, it is a line text editor with built-in extra commands

for file operations and system control.

When started, an access password is required in order to let the user to use the

system. By default, there is no password, so a simple <Enter> key is all that is

needed. The user is able to set their own password at a later stage later from within

RIDE, if one is needed.

An important detail to start with - RIDE is not a typical editor but a line-based

one. This means that what is shown on the screen is not necessarily how the text

actually looks in the memory. Individual lines can be displayed, edited, and then

other lines displayed below them in a non-sequential order. Using a line editor

may seem confusing at first, especially to those who have never used one before,

but also brings several benefits. First, it does not depend on the hardware in any

way. The line editor will look the same way on a small 2-line LCD as it will look

on a large terminal screen. Display height and width don’t matter. Another benefit

is, once mastered, using a line editor actually could help make writing code easier.

For example, in a source of several hundred or several thousand lines of code, a

developer might find themselves frequently scrolling up and down over large

chunks in order to check and refer to different parts of code. In RIDE this is

achieved by typing short one-character commands or sequences. In a short ‘dot-

command’ line the developer could for example jump to a line and change

something, then jump elsewhere change something else, and then jump back to

the initial location. RIDE also supports repeating the same command defined

number of times. This is useful when performing search and replace operations

in the text.

Commands to the editor are entered starting with a ‘.’ character from the first

position in a line. A single dot is sufficient for an entire command string. Spaces

are in the command string are ignored.

Editing could be made in a script-like fashion by giving several commands at

once to RIDE. For example, typing the command string “.S20 J55 C5” will tell

RIDE to set line 20 as source from which lines can be copied or moved, then jump

to line 55, and copy 5 lines there. In result lines 20, 21, 22, 23, and 24, will be

copied starting from line 55 on, and lines which were originally following line

55, will be pushed further down.

There are several commands, such as those expecting a file name, which don’t

allow more RIDE commands to follow on the same line, because the entire rest

of the line is assumed as parameter.

A full help of all commands can be obtained by entering the .H command.

Information about the current status of the editor can be seen by entering the ‘?’

command.

.h

>>> <Ctrl-Z> History <Ctrl-N> Next line or add new

>>> <Ctrl-L> Clear full line <Ctrl-Y> Clear to end of line

>>> <Ctrl-V> Clear screen <Ctrl-U> Print line ruler

>>> '.' at start of a line marks a command line

>>> '@' represents the current line N '#' source line N

>>> '!' is the number of lines incl current and to the end

.^ code Set keyboard break code (default 3)

.N pw, ph Page width and height (12-999 chars, 2+ lines)

.T width TAB width (1-80)

.~ Equivalent to .\ New line <Enter>

.* count Repeat the following cmd for spec'd number times

.`text` Insert txt at the cursor pos in the current line

.X [hpos] Place cursor at spec pos within the current line

.[J] [< or >] [number] Jump to line/prev/next; '.J' last N

.L [[P]count] List next N lines or until EOF [option Pause]

.P [[P]count] List previous N lines or from start [Pause]

.I [count] Insert blank lines. One line if [cnt] is missing

.D [count] Delete lines. Only the current with no parameter

.S [line] Set source line for copy and move ops .H .?

.C [count] Copy lines from source to current. Default num=1

.M [count] Move lines from source to current. Default num=1

.F [`text`] Set text for find; w/o param, do find <Ctrl-F>

.R [`text`] Set text for replace; w/o, find&repl <Ctrl-R>

.E file Execute command script from file

.= [file] Run source in memory or from file

.O file Open text file .W file Write .A file Append

./init drv: Initialise drive ./lock pwd Lock access

./dir [path][mask] List files. Accepted wildcards '?', '*'

./chdir [drv:][path] Change drive and/or dir; Show current

./mkdir path Make new dir ./rmdir path Remove empty

./del mask Delete files ./ren mask_old , mask_new

./copy mask, mask Copy files. Accepted wildcards '?', '*'

./list file List text file ./blist file List bin file

./date YYMMDD Set date ./time HHMMSS Set time :24h

./reset System reset

In the text above, the parts enclosed in [] brackets are optional. Hence, a the most

often used command ‘jump’ can be in the form of .J followed by an optional line

number, or just a dot followed by the line number. A single .J command with no

line number to follow will jump to the last line in the source.

As an example, the command ‘.JP’ will list the entire text from the start. The

same effect could be achieved by executing ‘.1L’ too, with the difference being

that in the first case the cursor will remain at last line in the source, whereas in

the second, it will remain at the first. Adding one more ‘P’ to the form ‘.JPP’

will ensure the listing pauses properly at every page.

Commands for copy and replace require a ‘source’ line which marks the start of

a block of one or more lines. The operation then takes from the source and

copies or moves to the destination at the current line of the cursor.

Let’s write a very simple test program in C:

1: #include <stdio.h>

2: for (int i=0; i<3; i++) printf ("Hello, World!\r\n");

3: |

Let’s now execute it by typing the command ‘.=’, followed by <Enter>, in the

current empty line:

 1: #include <stdio.h>

 2: for (int i=0; i<3; i++) printf ("Hello, World!\r\n");

.=

Hello, World!

Hello, World!

Hello, World!

 3: |

A program in the memory can be cleared with the command .1d!

Dissecting what the command actually does – it jumps to the first line, and then

deletes the number of lines from there to the last one.

Other fundamental commands in RIDE are .o to open and load a file, and .w to

write a file.

A file can be directly executed without loading into the editor with command .=

For example, .ohello.c will load the file “hello.c” in the editor, while typing

instead .=hello.c will directly run the program.

To demonstrate some of the RIDE’s capabilities, here is another example.

Let’s consider writing this generic text:

 1: This is line 1

 2: This is line 2

 3: This is line 3

 4: This is line 4

 5: This is line 5

 6: |

Let’s to add ‘00’ in front of all numbers. This command will do the job:

.1*!x6`00`>

After execution, the result will be

 6: 00|

This is a natural result of the execution. Just delete the excess characters by

pressing Ctrl-L, and list the text: .p

 1: This is line 001

 2: This is line 002

 3: This is line 003

 4: This is line 004

 5: This is line 005

 6: |

If we now want to restore how it was before: .1*!x6~~>

RIDE is capable of executing complex command sequences and even have them

executed as script from a file.

3.1.1 Storage Devices

There are two storage devices included in ELLO 1A. The first one is IFS: and is

built within an area of the internal flash in the PIC32. The second is SD1: and

refers to the SD card slot in the system.

IFS: is a very small (around 70 Kbytes) drive, whose main purpose is to store one

or two executable files and some configuration data in an embedded manner. It is

also prone to flash wearing off as result of continuous writes into it, so using the

IFS: drive should be limited to only occasional writing.

On power-up, RIDE looks for a file called ‘IFS:/AUTORUN’ and if such exists,

executes it. If an auto run file is not found in IFS:, the SD1: drive is searched for

one, too.

Thus, the user has the option to enable automatic execution of a program every

time the system starts.

Upon entering the editor, if card is found in the SD1: slot, it is made current drive,

otherwise IFS: remains as current drive.

3.1.2 File Operations

RIDE supports basic file operations such as listing a directory of files, making

and removing directories, copying, deleting, and renaming files, as well as

formatting a new drive (the command ‘./init’). The file system used is FAT16 or

FAT32, depending on the size of the drive, and file names are in 8.3 character

format.

File commands support wildcards ‘?’ and ‘*’. For grouping more than one file in

an operation. For example:

A command ‘./ren C*.C, D*.C’ will rename all files whose name starts with ‘C’

and have file extension .C, to the same file name but starting with ‘D’, instead.

A command ‘./dir TEST??3.TXT’ will list only the files with extension .TXT

whose name starts with ‘TEST’, have two other letters, and then finishes with ‘3’.

Additionally, RIDE includes commands to list the content of files in text or

hexadecimal form.

3.1.3 Console mode

In some cases a user may have the need to communicate with the ELLO computer

via a serial console. Such functionality is supported by the system software, and

provided on the same port pins as the PS/2 keyboard, so both are mutually

exclusive. On power up the system checks whether there is a PS/2 keyboard

connected, and if there is no keyboard detected, switches automatically in console

mode.

The console mode uses a fixed serial protocol (TTL signal levels) on the purple

mini-DIN connector, normally allocated for a keyboard.

Just like the keyboard, a serial console uses the same pins 1, 3, and 5 on the

connector for communication.

Pin 1: PS/2 keyboard data, or TxD channel from ELLO to the console

Pin 3: Common ground 0V

Pin 5: PS/2 keyboard clock, or RxD channel from the console to ELLO

If the system is built around a PIC32MX270 chip, serial console is also available

on the USB channel.

The serial console works with a fixed protocol 38400 bauds, 8 bits data length,

no parity, 1 stop bit (otherwise said “8N1”). The speed is chosen as a reasonable

compromise to accommodate the vast majority of possible terminal devices

connected to the ELLO.

The serial console works only with text output, and has no defined size for the

screen. The video output from the system is still available, provided there is a

monitor connected on the video port.

A system with no display gains about 15% in increased computational

performance due to the fact the processor is freed from the tasks associated with

generation of a video signal. It also makes use of the reserved video RAM, so

there is more memory available for user programs.

3.2 The “C.impl” Interpreter

C.impl means “Simple”. The aim is to achieve a close C90 specification

functional implementation.

There have been countless number of books and other online and offline

introductory and informational material already written on the topic of the C

language. Repeating all that material here would be pointless, so I will present

the C.impl capabilities only in a brief form.

First, C.impl is written in the way so it is a pure “execution-in-place” interpreter

– there is no conversion from source into a tokenised stream, and the entire

process runs in a single pass. While there is an execution speed penalty to this, a

benefit is the possibility to run sources directly from a read-only memory.

An additional important detail to the fact C.impl is an interpreter – since there is

no compilation and linking process, there is no pre-processor. The support for

pre-processor commands in the source is reduced to only #include for inclusion

of libraries.

//-style source commentaries are supported in the source, along with the standard

/* … */ model.

C.impl distinguishes and supports both pointer to constant (eg. const char *) and

constant pointer (eg. char const *).

One other important difference between C.impl and the C compilers, is that while

main() function is supported and acted on properly, in C.impl it is not required,

and if missing, program execution starts from the first source line. Hence, C.impl

code may be executed outside of any function body.

3.2.1 Data Types

bool 1-bit integer

char 8-bit signed or unsigned integer

short [int] 16-bit signed or unsigned integer

int System-specific width integer (32-bit in ELLO 1A)

long [int] 32-bit signed or unsigned integer

long long [int] 64-bit signed or unsigned integer

float 32-bit floating point

double 64-bit floating point

long double 80-bit or wider floating point

(supported in C.impl but not supported in ELLO 1A)

In addition to the basic types above, several other data types are also supported

size_t Natively represented as unsigned int

enum Standard enumeration list, evaluated as int values

struct Standard C-type data structure

union Standard C-type data union

va_list In conjunction with <stdarg.h> for argument lists

FILE File handler for standard <stdio.h> library functions

All integer types are signed by default (as if preceded by a signed declaration).

3.2.2 Data Constants

'character' A single 8-bit ASCII character

Some non-printable characters (those with ASCII code smaller than 32) have

predefined constants:

'\0' - ASCII code 0 (character NUL)

'\a' - ASCII code 7 (alarm)

'\b' - ASCII code 8 (backspace)

'\e' - ASCII code 27 (escape)

'\f' - ASCII code 12 (form feed)

'\n' - ASCII code 10 (new line)

'\r' - ASCII code 13 (carriage return)

'\t' - ASCII code 9 (horizontal tabulation)

'\\' - the character 'backslash'

'\'' - the character 'single quote'

'\"' - the character 'double quote'

'\?' - the character 'question mark'

In addition to the predefined constants, any ASCII code could be also entered

in its digital form:

‘\xnn’ with ‘nn’ as a two-digit hexadecimal code in the range 00…FF,

or as

‘\nnn’ with ‘nnn’ as a three-digit decimal code in the range 0...255.

"string" A zero-terminated string of 8-bit characters

String constants can be split on to multiple source lines

as long as there is nothing else other than whitespace

characters between them

up to 64-bit decimal integer numbers; optionally preceded by ‘0d’ or ‘0D’

up to 64-bit hexadecimal unsigned numbers; preceded by ‘0x’ or ‘0X’

up to 64-bit binary unsigned numbers; preceded by ‘0b’ or ‘0B’

up to 64-bit octal unsigned numbers; preceded by ‘0’

[sign] [iii [.fff [E or e [sign] [eee [.xxx]]]]]

A floating point number

Where:

iii.fff are the integer part and the fraction of the number,

accordingly.

The ‘E’ or ‘e’ symbol indicates that an exponent is being

supplied to the number.

eee.xxx are the integer part and the fraction of the

exponent, accordingly.

Numeric constants also support suffix specifiers for sign and/or size

Unsigned integer Trailing ‘U’ or ‘u’

Long integer or long

double

Trailing ‘L’ or ‘l’

Long long integer Trailing ‘LL’ or ‘ll’

Single precision FP

number

Trailing ‘F’ or ‘f’

Double precision FP

number

Trailing ‘D’ or ‘d’

The default type of all integer constants, unless explicitly specified, is signed int.

The default type of floating point number constants, unless explicitly specified,

is float.

3.2.3 Built-in Libraries

C.impl includes built-in several most used standard C libraries. A good

reference to the standard C libraries can be found at

https://www.cplusplus.com/reference/clibrary/

The useful command ‘./lsl’ in RIDE allows listing the pre-installed system

libraries or the content of any one of them. When listing a system library, it is

important to supply the parameter together with the enclosing <> characters.

Thus as an example, ‘./lsl <stdio.h>’ should be executed in order to list the

content of the stdio.h library.

<stdlib.h> Library with standard general utilities. C.impl also adds:

unsigned long BIT(unsigned char n)

Return an unsigned integer with the specified bit number

raised. Bit numbers start from 0, which is the lowest

meaningful bit in the number.

<stdio.h> Standard input/output functions. C.impl also adds:

void run(const char *filename)

Load and run a specified file. The new file is loaded in memory

over the currently executed program.

<stdint.h> Standard integer definitions.

<stdbool.h> Boolean definitions.

https://www.cplusplus.com/reference/clibrary/

<stdarg.h> Support for functions with variable number of parameters,

provided by the ellipsis (…) operator.

<string.h> Functions for manipulation of zero-terminated strings and

memory transfers.

<math.h> Mathematical functions and constants.

<limits.h> Definitions of various numerical limits.

<ctype.h> Functions for check and conversion of text characters.

<time.h> Library with data types and functions for timing.

<assert.h> Runtime assertion of an expression. C.impl also adds the

possibility assert the existence of installed library functions,

eg. assert(printf());

The library is also expanded with the following:

void error(int code, const char *message)

Trigger an execution error with supplied exit code and

optionally display a message. If a message is not required, then

the parameter is allowed to be NULL.

In case the error code is 0, the program will terminate as if it

has correctly finished execution.

In order to keep backward compatibility with future versions,

the error codes should be always negative numbers.

Error codes between -1 and -99 are reserved for C.impl and

should not be used.

In addition to the standard libraries above, these non-standard ones are also

included:

<conio.h> Functions for work with a generic I/O console.

The <conio.h> library is to a large extent a subset of the

<stdio.h> library with a notable exception being the kbhit()

function, not present in <stdio.h>.

Another important difference is the behaviour of the putchar()

function, which in <conio.h> works exactly as printf() with

consideration of the control codes, while the same in <stdio.h>

always outputs the visual character of a given code.

<fatfs.h> C.impl wrapper functions for most of the FatFs library.

FatFs is a popular open-source library for work with files and

drives in FAT16 and FAT32 disk volumes. Full information

about FatFs is available at the developer’s website:

http://elm-chan.org/fsw/ff/00index_e.html

<graphics.h> Higher-level hardware-independent graphical primitives. It is

assumed that a graphics mode is already initialised on a lower

level of execution.

<platform.h> Library with specific functions and definitions related to the

exact hardware platform on which the C.impl interpreter is

running.

3.3 The <platform.h> Library for C.impl

The library provides functions and definitions to work with the specific hardware

platform, in this case – the ELLO 1A system.

Note: The functions in the <platform.h> library only apply to the ELLO 1A

system.

3.3.1 System

void reset(void)

Immediately reset the system.

void delay_ms(unsigned long milliseconds)

Generate specified delay in milliseconds.

void set_timer(unsigned long milliseconds, void (*intHandler)())

Enable an internal timer counter which calls the specified function ‘intHandler()’

every time when at least the given number of milliseconds have passed. The timer

can be disabled by setting 0 in the ‘milliseconds’ parameter.

C.impl allows multiple simultaneously working timers, each calling a different

handler function.

http://elm-chan.org/fsw/ff/00index_e.html

3.3.2 Keyboard

void setKbdLayout(char country)

Set keyboard layout. This is a volatile setting and will restore back to the original

code on a system reboot.

Currently supported keyboards codes are:

0 US International

1 UK Extended

2 DE (Germany, Austria)

3 FR (France, French-speaking countries)

char getKbdLayout(void)

Return the current keyboard layout.

void setBrkCode(char code)

Set ASCII code if the break key (normally 3 for Ctrl-C).

This is a volatile setting and will restore back to the original code on a system

reboot.

char getBrkCode(void)

Return the current break code.

3.3.3 Sound

void beep(void)

Generate a 100 milliseconds long beep tone with frequency 945 Hz.

void sound(int freq, int vol)

Generate sound with specified frequency in Hertz and volume in the range

between 0 and 1000.

The sound will continue until a new sound() function sets different parameters.

It can be stopped completely by supplying 0 to either the frequency or the volume

parameters, or both.

3.3.4 Video

These functions are the low-level layer for a video output. They ensure

initialisation of a video mode, and read/write of a single pixel on the screen.

void initVideo(int mode)

Initialise video mode. ELLO 1A only supports video mode 0 (480x320, mono).

Any value other than 0 in the parameter, may cause unpredicted behaviour in

ELLO 1A.

int getVmode(void)

Return the current active video mode.

int Hres(void)

int Vres(void)

Return the video screen horizontal and vertical resolution in number of pixels, or

-1 in case the screen is does not support graphics.

void clearScreen(int colour)

Fill the entire screen with a given colour.

int getPixel(int x, int y)

void setPixel(int x, int y, int c)

Read and return the colour of, or set a single pixel on the screen at coordinates

(x,y) in colour (c).

3.3.5 I/O Ports

Ports are accessed as regular read/write operations in the memory map. The

library contains predefined constants for the base address of each port register, as

well as constants referring to offset from the base for registers related to the port.

Thus for example, writing 0xFF into the PIC32’s LATB register will be expressed

as *(BASEB + LATA) = 0xFF;

As another example, clearing the specific bit RA0 would be *(BASEA +

LATCLR) = BIT(0);

Referring to invalid port numbers in C.impl may cause unexpected system

behaviour.

3.3.6 Communications

int spiOpen(int channel, int mode, int baudrate)

Open a SPI channel for communication. Will return 0 is successful, or a negative

value result otherwise.

ELLO 1A has only one SPI channel, which is shared among all SPI devices

(including the SD card), so the only acceptable parameter for channel number, is

1.

The ‘mode’ parameter specifies the SPI mode between 0 and 3. The port is always

initialised for exchange of data words with length of 8 bits.

The ‘baudrate‘ parameter defines the speed of the transfer.

int spiClose(int channel)

Close a SPI channel. Will return 0 is successful, or a negative value result

otherwise.

The only acceptable parameter for ‘channel’ in ELLO 1A, is 1.

unsigned char spiByte(int channel, unsigned char data)

Perform data exchange of a single byte through an open SPI channel. A SPI

transfer involves simultaneous transmit and receive operation on every transfer.

It is important to mention, that the chip select signal for the SPI device

participating on the other end of the communication, must be set low prior to the

actual transfer taking place, and set back high when the transfer is complete.

The only acceptable parameter for ‘channel’ in ELLO 1A, is 1.

void spiBlock(int channel, unsigned char *buffer, size_t len)

Perform data exchange of data block of ‘len’ bytes through an open SPI channel.

The data to be transmitted should be preloaded in the buffer, and the received data

is returned on its place.

It is important to mention, that the chip select signal for the SPI device

participating on the other end of the communication, must be set low prior to the

actual transfer taking place, and set back high when the transfer is complete.

The only acceptable parameter for ‘channel’ in ELLO 1A, is 1.

3.4 The <graphics.h> Library for C.impl

void drawLine(int x1, int y1, int x2, int y2, int c)

Draw line from point (x1,y2) to point (x2,y2) and colour (c).

void drawFrame(int x1, int y1, int x2, int y2, int c)

Draw a rectangular frame built from four lines between points (x1,y1) and

(x2,y2), and colour (c).

void drawRect(int x1, int y1, int x2, int y2, int c)

Draw a solid rectangle between points (x1,y1) and (x2,y2), and colour (c).

void drawTriangle(int x1, int y1, int x2, int y2, int x3, int y3, int c)

Draw a solid triangle between points (x1,y1), (x2,y2), and (x3,y3), and colour (c).

void drawCircle(int x, int y, int r, int c)

Draw a circle with centre point (x,y) and radius (r) and colour (c).

If the radius is specified as a positive number, the circle is drawn solid. If (r) is

negative, only a circle frame is drawn.

void drawEllipse(int x, int y, int rx, int ry, double tiltAngle, int c)

Draw an ellipse with centre point (x,y), two radiuses (rx) and (ry), and colour (c).

The parameter ‘tiltAngle’ specifies the tilt (rotation) angle of the ellipse in

measure of radians.

If both radiuses are given as positive numbers, the ellipse is drawn solid.

If both radiuses are given as negative numbers, the ellipse is drawn as a frame.

If one of the radiuses is positive while the other is negative, nothing is drawn.

void drawSector(int x, int y, int rx, int ry, double tiltAngle, double startAngle,

double endAngle, int c)

Draw a sector of ellipse, whose centre is at (x,y), radiuses (rx) and (ry), tilt angle

(tiltAngle) in radians, and colour (c).

Two additional angular parameters (startAngle) and (endAngle), both in measure

of radians, specify the actual draw sector as part of a full ellipse.

In case the radiuses (rx) and (ry) are equal, the ellipse is transformed into a circle.

If both radiuses are given as positive numbers, the ellipse is drawn solid. If both

radiuses are given as negative numbers, the ellipse is drawn as a frame. If one of

the radiuses is positive while the other is negative, nothing is drawn.

void floodFill(int x, int y, int c)

Flood fill with colour (c) an enclosed area. The start point (x,y) must be inside

the area to be filled.

void getRect(void *buffer, int x1, int y1, int x2, int y2)

Get a rectangular area from the screen into a memory buffer. The buffer must be

pre-allocated and with sufficient size. The minimum needed buffer size can be

calculated with the formula:

Buffer(bytes) = 8 + (H * V) / 8

Where H and V are the horizontal and vertical dimensions of the rectangle in

pixels.

void putRect(void *buffer, int x, int y, int opr)

Restore a rectangular area from a buffer on the screen starting from specified

coordinates of the top left corner of the area.

The last parameter defines the logic type of restoring the pixels:

OPR_COPY 0 All pixels from the buffer overwrite the pixels on the screen.

OPR_OR 1 Logical operation “OR” is performed between every pixel

from the buffer and its destination on the screen.

OPR_XOR 2 Logical operation “Exclusive OR” is performed between every

pixel from the buffer and its destination on the screen.

OPR_AND 3 Logical operation “AND” is performed between every pixel

from the buffer and its destination on the screen.

OPR_NOT 4 All pixels are restored on the screen in their inverted form.

Unknown operation types are assumed as type 0. Constants “OPR_xxx” as per

the table above are predefined in the library.

void drawShape(int x, int y, double tiltAngle, char *def)

Draw a vector-defined shape, starting from point (x,y) and with tilt angle

(rotation) given in measure of radians.

The shape definition is a text string consisting of commands and vectors:

M [relX],[relY] Move to a new point with relative coordinates (relX,relY)

C [col] Set new drawing colour and enable draw when moving

D Enable draw when moving

N Disable draw when moving

F Flood fill taking the current position as start point

Whitespaces are ignored in the definition string. Vectors and colours also allow

use of hexadecimal numbers, preceded by ‘X’ or ‘x’ character. Missing numbers

are assumed 0. Thus, a command “M,10” is a functional equivalent to “M0,10”.

Command “M-10,” is a functional equivalent to “M-10,0”.

Predefined colour constants are not supported in the shape definition string.

Colours must be specified in a numeric form.

An example for vectored shape:

drawShape(160, 130, 0.0, "C-3 M10,20 M20,10 M-20,10 M-10,20 C1 M-10,-20

M-20,-10 M20,-10 M10,-20 N M,15 C-12 M,30 N M-15,-15 D M30,");

This definition will draw a four-rayed star with green left part and red right part

(on a system that supports colours), and a blue cross inside, starting from the top

point at screen coordinates (160,130) and not rotated.

void drawChar(int ch)

Draw a character from the currently active font.

In scale factors greater than 2, the drawing function applies an algorithm to

smooth down the blocky appearance of the large characters.

void lockScroll(void)

Prevent the screen from automatically scroll up when printing characters

normally would require it to.

void unlockScroll(void)

Restore the automatically scroll up when printing characters requires.

void posX(int x)

int posX(void)

Set or return horizontal position for the next text character.

void posY(int x)

int posY(void)

Set or return vertical position for the next text character.

void fontScale(int factor)

int fontScale(void)

Set or return the scale factor for drawing font characters.

void fontFcol(int col)

int fontFcol(void)

Set or return the drawing colour for font characters.

void fontBcol(int col)

int fontBcol(void)

Set or return the background colour for font characters.

void fontSet(font_t *font)

Activate custom font. The parameter (*font) is a pointer to a font structure. Once

activated, the font will be used by all following functions which output characters

on the screen.

3.4.1 Fonts

C.impl supports drawing characters from different fonts. Font are defined as a

sequence of individual bitmaps for each character, and characters with variable

width within the same font are supported.

A font structure is defined as:

typedef struct font_t {

 font_header_t header;

 unsigned char definitions[];

};

A separate header structure holds the general parameters of the font:

typedef struct font_header_t {

 unsigned short start; // code of the first character in the font

 unsigned short characters; // number of character definitions in the font

 unsigned char width; // font width

// This parameter specifies the number of columns in the characters.

// In fonts where the field (.width) is 0, every character definition starts

// with a byte that defines how many columns are present in this character.

// The actual number of bytes to follow depend on the height of the font as

// well: for fonts with height 8 lines or less, every byte represents one

// column, for fonts with height 16 lines or less, every column takes two

// bytes, and so on.

// In fonts with fixed width where (.width) is greater than 0, the leading

// width-specifying byte in every definition is missing since the width is

// already know for all characters

 unsigned char height; // character definition height in pixels

// This parameter also inherently defines the number of bytes needed for one

// column of a character

 unsigned char blankL; // blank columns to add on the left side of every char

 unsigned char blankR;// blank columns to add on the right side of every char

 unsigned char blankT; // blank rows to add on the top side of every character

 unsigned char blankB; // blank rows to add on the bottom side of every char

 char *name; // optional font name as ASCIIZ string

};

Font definition examples:

1. The definition of character ‘A’ in a font with fixed width 5 (the “width” field

in the font header has value 5 and that defines that all characters in the font

will be within 5 columns) and height 7 rows:

This sequence of bytes looks like this:

0x7C, 0x12, 0x11, 0x12, 0x7C

 7C 12 11 12 7C

0 #

1 # #

2 # #

3 # #

4 # # # # #

5 # #

6 # #

7 not used

In addition to the definition, in the font header there are fixed definitions for

certain number of blank pixels to be added to all sides of every character in the

font.

2. Definition of character ‘W’ in a font with variable width (the “width” field in

the font header has value 0) and height 14 rows.

Since the width is variable, every character in the font has its own width, and

that is specified in one additional byte at the beginning of every character

definition.

The character in this particular example has 12 columns, and every column is

described by two bytes. Since by definition the font has maximum height of

14 pixels, the last two bits in the second byte will remain unused and they are

not displayed on the screen.

The definition will look like this:

12, 0x01,0x00, 0xFE,0x01, 0x00,0x07, 0x00,0x20, 0x20,0x18, 0xE0,0x07,

0x20,0x1e, 0x00,0x20, 0x00,0x18, 0xFE,0x07, 0x01,0x00

 01 FE 00 00 00 20 E0 20 00 00 FE 01

0 # #

1 # #

2 # #

3 # #

4 # #

5 # # # # #

6 # # #

7 # # #

 00 01 07 1E 20 18 07 1E 20 18 07 00

8 # # # #

9 # # # # #

10 # # # # #

11 # # # #

12 # # # #

13 # #

14
not used in this font

15

All character definitions start immediately after the font header, and follow up in

sequential order, so in the example above, after the character ‘W’ will follow

character 'X', then character ‘Y’, and so on.

C.impl includes a standard system font with fixed size in a 5x8 pattern drawn in

a 6x11 area. The font is based on the full 255 characters CP437 map with the only

change introduced in code 158 to include the euro sign character.

3.4.2 Colours

C.impl operates natively with 24-bit colours, however in a monochrome graphic

system like the ELLO 1A, any colour greater than 0 is the same. Simulated

“colours” are however possible, by using specific graphical patterns. Those

simulated colours are given to the interpreter as negative numbers.

The <platform.h> library for ELLO 1A includes many such predefined patters:

Colour constant Numeric value Pattern

COL_SOLID 0xFFFFFF Main colour (solid white/active)

COL_NONE 0 No colour (solid black)

COL_INVERT -1 Opposite to the current colour

COL_TRANSP -2 No colour (transparent)

COL_GREY50 -3 50% grey

COL_GREY25 -4 25% grey

COL_HLN50 -5 50% horizontal lines

COL_HLN33 -6 33% horizontal lines

COL_HLN25 -7 25% horizontal lines

COL_VLN50 -8 50% vertical lines

COL_VLN33 -9 33% vertical lines

COL_VLN25 -10 25% vertical lines
Reserved -11

COL_DGL33 -12 33% / diagonal lines

COL_DGL25 -13 25% / diagonal lines
Reserved -14

COL_DGR33 -15 33% \ diagonal lines

COL_DGR25 -16 25% \ diagonal lines

COL_SPL33 -17 33% / dotted diagonal lines

COL_SPL25 -18 25% / dotted diagonal lines

COL_SPR33 -19 33% \ dotted diagonal lines

COL_SPR25 -20 25% \ dotted diagonal lines
Reserved -21 … -29

Percentage fill -30 … -50 A pixel is turned on with specific

probability.

The value -30 is equivalent to

probability 0 (pixel is never on).

Every next value is increasing the

probability by 5%.

Thus, value -31 is probability 5%, value

-32 is probability 10%, and so on.

Value -50 represents probability 100%

(pixel is always on).

4 Frequently Asked Questions

4.1.1 Why was PIC32 chosen for ELLO 1A?

Due to several reasons. First, it is a very popular and well known chip, an active

product with large supporting code base and community of users. It is one with

which I am acquainted quite well, and has proved itself in a number of other

projects that I have made in the past. The programming tools for it are also easily

available and don’t cost much. The chip itself is very robust and tolerates mistakes

such as shorted pins or incorrect voltages, it has all the essentials without being

bloated with rarely used stuff, and most importantly – comes in a DIP package.

As far as my knowledge goes, at the moment of building the ELLO 1A there was

no other microcontroller with similar or better characteristics than

PIC32MX170/270, also available on the market in through-hole package.

I have been appealing for some time now to Microchip for a release of the

PIC32MZ version in DIP package. If that happens some day in the future, there

could well be a more powerful version of ELLO for it too.

4.1.2 Are there any known issues and limitations?

There are some limitations and deviations from the standard in C.impl. Most of

those are down to the fact it is an interpreter.

1. Function pointers and function address dereferencing are not supported.

https://microchip.com/

2. In for(), while(), and do...while() loops, 'break' and 'continue' can only work

from within a {} block.

3. The 'goto' instruction only allows jumping to a location at the same or upper

{} depth level.

4. A goto label must have unique name among all labels globally.

5. The 'extern' keyword is not supported since the entire program and included

libraries are regarded as a single source file.

6. In the ternary operator ?: structure, there must be a space before the colon ':'

so it is not mistaken for a label.

7. The main() function must not have parameters or a return value.

8. In composite data types (enum, struct, union), the name of the type must be

before the {} block, but can't be after.

9. Structures, unions, and enums are all supported but have high runtime memory

cost and should be used with care.

10. Keywords 'struct', 'union', and 'enum' must be used only for the initial type

declaration, but not for declaring later instances.

11. Casting to structure or union pointer will not work. The cost of its

implementation in an interpreter is massive in terms of both runtime memory

and execution speed.

12. Indexing by pointers (eg. int a[10]; int b = *(a+1);) will not work for data

types other than 8-bit. Indexing needs to be done in the brackets way.

4.1.3 What is the license for this project?

ELLO is an open-hardware project. There are no limitations for its use in any way

the user sees fit.

© Konstantin Dimitrov, knivd@me.com

mailto:knivd@me.com

The source codes for its software are currently available by request to contributors

only, but my plan is to have it fully released as open-source, once it reaches a

more mature and tested stage.

If you want to become a contributor, join and write in the FB group:

https://www.facebook.com/groups/ellocc

This hardware and software is provided by the author(s) "as is" and any express

or implied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed.

In no event shall the author(s) be liable for any direct, indirect, incidental, special,

exemplary, or consequential damages (including, but not limited to, procurement

of substitute goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether in contract,

strict liability, or tort (including negligence or otherwise) arising in any way out

of the use of this software, even if advised of the possibility of such damage.

https://www.facebook.com/groups/ellocc

5 Screenshots

The login screen

After login

The help page

Listing the files on SD1:

Writing code in the text editor

Running the code (the blurred part is moving)

6 Downloads

You can buy boards for ELLO 1A from my Tindie store

(PDF) Schematic

(XLS) BOM for Through-Hole assembly

(XLS) BOM for Surface-Mount assembly

(PDF) Assembly Drawing

(ZIP) PCB Gerbers pack

(ZIP) Full manufacturing pack

(ZIP) Firmware for PIC32MX170 or PIC32MX270

NOTE: The firmware is developed on PIC32MX270 in order to ensure future support

for USB functionality. When programming a PIC32MX170, the programmer will

display a warning that the device is not matching the intended target.

Ignore the warning and upload the code into the microcontroller.

Facebook group: https://www.facebook.com/groups/ellocc

https://www.tindie.com/stores/knivd/#store-section-products
http://ello.cc/downloads/ELLO%201A%20Schematic.pdf
http://ello.cc/downloads/BOM_1A_TH.xls
http://ello.cc/downloads/BOM_1A_SM.xls
http://ello.cc/downloads/Assembly%20Drawings.pdf
http://ello.cc/downloads/1A_gerbers.zip
http://ello.cc/downloads/1A_full_zip
http://ello.cc/downloads/1A_software.zip
https://www.facebook.com/groups/ellocc
https://www.facebook.com/groups/ellocc

7 Change Log

R120 07/03/2022

Graphics changed from 480x320 to 480x250 to enable more available system

memory.

Added ruler in RIDE (Ctrl-U).

Multiple corrections and improvements.

R114 15/06/2021

Introduced internal library callback functions for support of hardware-driven

events.

The <platform.h> library enriched with functions for work with the serial port

expansion in ELLO 1A.

RIDE and C.impl ported on a PIC32MZ chip.

Multiple improvements and bug fixes throughout the project.

R113 21/05/2021

Updated dynamic memory manager library for more efficient work in situations

when the available free memory is extremely low.

R112 24/04/2021

Introduced support for the I2C interface (single master mode only). Added I2C

functions to the <platform.h> library.

ELLO 1A now supports an optional real-time clock/calendar of a type compatible

with DS3231, connected on the I2C bus. Added RIDE commands for setting time

and date.

Improved ./lsl command in RIDE with additional information about the C.impl

libraries.

The FatFs library upgraded to its latest version 0.14b.

Introduced support for entering international characters with non-US/UK

keyboards as well as combinations with dead keys.

R111 13/04/2021

Main focus in the release put on correction of multiple issues in C.impl.

PS/2 keyboard functions revamped to provide support for input of extended

character set. Some characters in the built-in font were also edited for better

appearance and clarity.

Optimised country layout codes.

Expanded settings structure to include validity checksum, and tab width and

console page size. Settings from previous versions will revert to default after first

run.

R110 03/04/2021

Graphic resolution reverted back to 480x320 pixels with a view to ensure support

for a future LCD-based mobile version. Monitors set for a previous version of the

software, may need readjustment.

Text resolution changed from 60x27 characters, to 80x29 characters.

Default system font footprint changed from 8x12 pixels to 6x11 pixels.

Source file tree reorganised and optimised with multiple small improvements.

Support for #pragma options removed and replaced by new functions and new

RIDE commands.

Keyboard layout and break code set by environment commands have permanent

effect; the corresponding functions in <platform.h> stick to volatile model.

Fixed issues with memory allocation in copy/move operations in RIDE.

Errata note for rL2 PCB:

The component model for OSC1 should be read as MXO45HSLV-3C-20M000000

R102 26/03/2021

Fixed bug in getRect() to prevent the screen area being cleared during the process.

Startup process first checks for existence of “IFS:/autorun” and if one is not

found, checks for an alternative in “SD1:/autorun”.

Introduced support for USB console (in systems with PIC32MX270 only).

R101 18/03/2021

Graphic functions getRect() and putRect() and function constants.

Improved operation in console mode.

R100 16/03/2021

First “final” release.

Added support for serial console with protocol 38400/8N1.

Presence of connected video monitor is tested and the processor freed from video-

supporting tasks in case a monitor is not detected.

Percentage fill colours.

R1c 06/03/2021

Candidate release.

Default video resolution (video mode 0) changed from 480x320 to 480x324 for

better utilisation of RAM and accurate text alignment on screen.

R1b 28/02/2021

Beta release.

Hardware files and schematic updated to revert back to signal output voltage

clipping. Added new components R4 and D1 in the BOM.

Added support for SPI and PIC32’s I/O ports.

Introduced timed interrupts.

R1a 25/02/2021

Initial alpha release.

	1 Introduction
	2 Hardware
	2.1 Specifications
	2.2 Schematic
	2.3 PCB

	3 Software
	3.1 The “RIDE” Operating Environment
	3.1.1 Storage Devices
	3.1.2 File Operations
	3.1.3 Console mode

	3.2 The “C.impl” Interpreter
	3.2.1 Data Types
	3.2.2 Data Constants
	3.2.3 Built-in Libraries

	3.3 The <platform.h> Library for C.impl
	3.3.1 System
	3.3.2 Keyboard
	3.3.3 Sound
	3.3.4 Video
	3.3.5 I/O Ports
	3.3.6 Communications

	3.4 The <graphics.h> Library for C.impl
	3.4.1 Fonts
	3.4.2 Colours

	4 Frequently Asked Questions
	4.1.1 Why was PIC32 chosen for ELLO 1A?
	4.1.2 Are there any known issues and limitations?
	4.1.3 What is the license for this project?

	5 Screenshots
	6 Downloads
	7 Change Log

